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Abstract
We have studied the dissipative dynamics of a solid-state qubit with an extra
electron confined to either one of two coupled quantum dots. Previous
theoretical work based on Bloch-type rate equations gave an unphysical uniform
occupation probability of the electron in the quantum dots even for non-identical
dots. We show that this is due to neglecting higher-order interactions in the
analysis. By including higher-order terms, we obtain expected asymmetric
occupation probabilities for non-identical dots. Our work demonstrates that
the high-order interaction terms can lead to important qualitative impacts on the
operation of the qubit.

1. Introduction

Quantum measurement has attracted much attention because of its fundamental importance as
well as its relevance to quantum computing. However, there are still vastly different points
of view on quantum measurement. On the one hand, the Zeno effect predicts that continuous
measurement can freeze the state of a quantum system [1]. On the other hand, interaction with
the outside environment such as a detector is expected to lead to the collapse of the state of
the measured system. Therefore, reconciling these views by detailing the real mechanisms for
selected model systems is very important.

Many experiments on two-level quantum systems (see, e.g., [2–4]) have been performed to
study this problem. Together with experimental investigations, some theoretical studies were
also devoted to this important topic. Gurvitz et al [5, 6] have theoretically studied a mesoscopic
qubit-plus-detector system. The qubit consists of two coupled quantum dots (CQDs) while the
detector is a quantum point contact (QPC) interacting locally with one of the dots. The authors
derived a set of Bloch-type rate equations to describe the measurement effects. Goan et al
[7] considered the same setup and developed a Lindblad quantum master equation using the
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Figure 1. Two coupled quantum dots (CQDs) connected with a quantum point contact (QPC).
Initially, all states up to the Fermi energy level (μL or μR) in each reservoir are filled by electrons.
E1 and E2 denote the energy levels of an extra electron in the left and right quantum dots,
respectively. The location of this extra electron will affect the current through the QPC. The
quantum state of the CQDs can hence be read out by a current measurement.

quantum trajectory approach for dissipative processes. However, while a reasonable result
was obtained for a pair of identical quantum dots in both [5] and [7], these works predicted
unreasonable equal occupation probabilities in the dots when their energy levels are different.
Subsequently, Li et al [8] developed a unified quantum master equation with the Markovian
approximation and obtained distinct occupation probabilities for non-identical quantum dots as
expected.

In this work, we further study this qubit-plus-detector system following the original
approach of Gurvitz et al [5]. We have found that the unphysical result of identical occupation
probabilities in non-identical dots mentioned above is only due to neglecting higher-order terms
in their derivation. We will show that higher-order terms are of fundamental importance.
Retaining additional terms in our calculations leads to physically valid results consistent
with those of Li et al [8]. Our analysis also illustrates the detailed mechanism of quantum
measurement.

2. Bloch-type rate equations

The system we study is shown schematically in figure 1. It can be modelled by the Hamiltonian
H = HCQD + HQPC + Hint, with

HCQD = E1a†
1a1 + E2a†

2a2 +�0(a
†
1a2 + a†

2a1),

HQPC =
∑

l

Ela
†
l al +

∑

r

Er a†
r ar +

∑

l,r

�lr (a
†
l ar + H.c.),

Hint =
∑

l,r

δ�lr a†
1a1(a

†
l ar + a†

r al).

(1)

Here, HCQD is the Hamiltonian of the CQDs. The Hubbard terms are neglected because we
consider only one extra electron in the CQDs. The parameter�0 denotes the hopping amplitude
of the extra electron between the two single-dot states (see figure 1). HQPC is the Hamiltonian of
the QPC, and Hint is the interaction Hamiltonian between the CQDs and the QPC. Electrostatic
effects are included in Hint: an extra electron in the left dot will lead to an effective variation
δ�lr in the coupling �lr between the states El and Er in the two reservoirs of the QPC. The
resulting coupling then becomes �′

lr = �lr + δ�lr .
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In the occupation representation, the many-body wavefunction of the entire system (the
CQDs plus the QPC) can be written as

|ψ(t)〉 =
[

b1(t)a
†
1 + b2(t)a

†
2 +

∑

l,r

b1lr (t)a
†
1a†

r al +
∑

l,r

b1rl(t)a
†
1a†

l ar

+
∑

l,r

b2lr (t)a
†
2a†

r al +
∑

l,r

b2rl(t)a
†
2a†

l ar +
∑

l<l′ ,r<r ′
b1ll′rr ′(t)a†

1a†
r a†

r ′alal′

+
∑

l<l′ ,r<r ′
b1rr ′ll′ (t)a

†
1a†

l a†
l′ ar ar ′ +

∑

l<l′ ,r<r ′
b2ll′rr ′(t)a†

2a†
r a†

r ′alal′

+
∑

l<l′ ,r<r ′
b2rr ′ll′ (t)a

†
2a†

l a†
l′ ar ar ′ + · · ·

]
|0〉 , (2)

where b j(t), j = 1, 2, 1lr, 2lr , . . ., are the time-dependent probability amplitudes of finding
the system in the corresponding states. The vacuum state |0〉 corresponds to the state of the
entire system with no extra electron in the CQDs and before the transfer of any electron between
the reservoirs in the QPC. Then, b1lr (t) for instance denotes the probability amplitude that the
extra electron is in the left dot and an electron has passed through the barrier in the QPC.
The initial conditions are b1(0) = 1 and b j(0) = 0 for j = 2, 1lr, 2lr , . . .. Substituting
the many-body wavefunction (equation (2)) and the Hamiltonian (equation (1)) into the time-
dependent Schrödinger equation i |ψ̇(t)〉 = H |ψ(t)〉 gives an infinite set of linear equations
for the probability amplitudes b j(t). Performing a Laplace transform to each equation, the
transformed amplitude b j(E) = ∫ +∞

0 eiEt b j (t) dt follows:

(E − E1)b1(E)−�0b2(E)−
∑

l,r

�′
lr b1lr (E)−

∑

l′ ,r ′
�′

l′r ′ b1r ′l′(E) = i, (3a)

(E − E2)b2(E)−�0b1(E)−
∑

l,r

�lr b2lr (E)−
∑

l′ ,r ′
�l′r ′ b2r ′l′(E) = 0, (3b)

(E + El − E1 − Er )b1lr (E)−�′
lr b1(E)−�0b2lr (E)−

∑

l′r ′
�′

l′r ′b1ll′rr ′(E) = 0, (3c)

(E + El − E2 − Er )b2lr (E)−�lr b2(E)−�0b1lr (E)−
∑

l′r ′
�l′r ′b2ll′rr ′(E) = 0, (3d)

(E + Er − E1 − El)b1rl(E)−�′
lr b1(E)−�0b2rl(E)−

∑

l′r ′
�′

l′r ′b1rr ′ll′ (E) = 0, (3e)

(E + Er − E2 − El)b2rl(E)−�lr b2(E)−�0b1rl(E)−
∑

l′r ′
�l′r ′b2rr ′ll′ (E) = 0, (3 f )

· · ·· · ·· · ·.
To solve equations (3), Gurvitz et al [5, 6] introduced an approximation by keeping terms up
to the order of O(�2) to simplify the corresponding sums (see equations (A5) in [5]). After
tracing out the degrees of freedom of the QPC, a coupled set of Bloch-type rate equations are
derived. As shown in figure 3 of [5b], however, the resulting occupation probabilities for states
|E1〉 and |E2〉 are 0.5 when t → ∞ for both symmetric and asymmetric CQDs. This is correct
for the symmetric case with identical quantum dots, but is unphysical in the latter case. Here,
we show that this unphysical feature can be rectified by taking terms of the order of �2�0/Vd

or even higher into account. Also, following [5], we consider the high-voltage regime with
eVd � �2ρ, where Vd = μL − μR is the applied gate voltage, and ρ is the density of states
in the reservoirs. In this high-voltage regime, when the temperature is low enough (here it is
chosen as zero for simplicity, as in [5]), the electron has an extremely low probability to pass
through the QPC from the right reservoir (with a lower μR) to the left one (with a higher μL).
Thus, the terms describing the back processes, e.g.,

∑
l<l′ ,r<r ′ b1rr ′ll′ (t), can be neglected.
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Performing the summation
∑

l,r �
′
lr b1lr (E) in equation (3a) for example, we obtain that

∑

l,r

�′
lr b1lr (E) ≈ − iD′

2Vd
(Vd + E − E1)b1(E)+ i�

2Vd
b2(E), (4)

where D′ = 2πρlρr�
′2Vd, � = 2πρlρr�0��

′Vd, and the corresponding calculations are
shown in the appendix. With the same approximate treatment, the resulting equations for b j(E)
are
[

E − E1 + iD′

2Vd
(Vd + E − E1)

]
b1(E)−

(
�0 + i�

2Vd

)
b2(E) = i, (5a)

[
E − E2 + iD

2Vd
(Vd + E − E2)

]
b2(E)−

(
�0 + i�

2Vd

)
b1(E) = 0, (5b)

[
E + Elr1 + iD′

2Vd
(Vd + E + Elr1)

]
b1lr (E)−�′b1(E)−

(
�0 + i�

2Vd

)
b2lr (E) = 0, (5c)

[
E + Elr2 + iD

2Vd
(Vd + E + Elr2)

]
b2lr (E)−�b2(E)−

(
�0 + i�

2Vd

)
b1lr (E) = 0, (5d)

· · ·· · ·· · ·,
where D = 2πρlρr�

2Vd and Elrm = El − Em − Er (m = 1, 2). Now, we introduce the
notation

σ
(n)
i j =

∑

l···r ···
bil···r ···(t)b∗

jl···r ···(t).

For instance, σ (1)11 = ∑
lr b1lr (t)b∗

1lr (t) denotes the occupation probability for the extra electron
staying in the left quantum dot and an electron having passed through the QPC.

The equations for the amplitudes b j(E), j = 1, 2, 1lr, 2lr , . . ., can be converted to a new
set of equations for σ (n)i j using the inverse Laplace transform:

σ
(n)
i j =

∑

l···r ···

∫
dE dE ′

4π2
bil···r ···(E)b∗

jl···r ···(E
′)ei(E ′−E)t .

We now multiply equation (5c) by b∗
1lr (E

′). The resulting equation is then subtracted by its
complex conjugate after exchanging E with E ′. We obtain
∫ ∫

dE dE ′

4π2

∑

lr

{(E ′ − E − iD′)b1lr (E)b
∗
1lr (E

′)

− iD′

2Vd
[(E ′ + Elr1)+ (E + Elr1)]b1lr (E)b

∗
1lr (E

′)

+ i�

2Vd
[b2lr (E)b

∗
1lr (E

′)+ b1lr (E)b
∗
2lr (E

′)] −�0[b1lr (E)b
∗
2lr (E

′)

− b2lr (E)b
∗
1lr (E

′)] −�′[b∗
1(E

′)b1lr (E)− b1(E)b
∗
1lr (E

′)]}ei(E ′−E)t = 0. (6)

Using equations (4), (5a) and (5c), we can obtain from equation (6), by neglecting terms of
order O(�6/V 2

d ) and higher, that

σ̇
(1)
11 = −D′

[
σ
(1)
11 − σ

(0)
11

]
+ i�0

[
σ
(1)
12 − σ

(1)
21

]

+ �

2Vd

(
1 − �′

�

) [
σ
(1)
12 + σ

(1)
21 − σ

(0)
12 − σ

(0)
21

]
. (7)
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Similarly, equation (5d) gives

σ̇
(1)
22 = −D

[
σ
(1)
22 − σ

(0)
22

]
+ i�0

[
σ
(1)
21 − σ

(1)
12

]

+ �

2Vd

(
1 − �

�′

) [
σ
(1)
12 + σ

(1)
21 − σ

(0)
12 − σ

(0)
21

]
. (8)

To calculate the off-diagonal element σ12, we subtract the product of equation (5c) and b∗
2lr (E

′)
by the product of b1lr (E) and the complex conjugate of equation (5d) after exchanging
E ↔ E ′. We obtain

σ̇
(1)
12 = iεσ (1)12 − 1

2 (D
′ + D)σ (1)12 + √

DD′σ (0)12 + i�0

[
σ
(1)
11 − σ

(1)
22

]

− �

2Vd

[
�′

�
σ
(0)
11 + �

�′ σ
(0)
22

]
+ �

2Vd

[
σ
(0)
11 + σ

(0)
22

]

− �

2Vd

[
�

�′ σ
(1)
11 + �′

�
σ
(1)
22

]
+ �

2Vd

[
σ
(1)
11 + σ

(1)
22

]
, (9)

where ε = E2 − E1 is the energy-level difference of the two quantum dots. Similar procedures
can be used for σ (n)i j (n � 2), and the resulting equations are

σ̇
(n)
11 = −D′

[
σ
(n)
11 − σ

(n−1)
11

]
+ i�0

[
σ
(n)
12 − σ

(n)
21

]

+ �

2Vd

(
1 − �′

�

) [
σ
(n)
12 + σ

(n)
21 − σ

(n−1)
12 − σ

(n−1)
21

]
,

σ̇
(n)
22 = −D

[
σ
(n)
22 − σ

(n−1)
22

]
+ i�0

[
σ
(n)
21 − σ

(n)
12

]

+ �

2Vd

(
1 − �

�′

) [
σ
(n)
12 + σ

(n)
21 − σ

(n−1)
12 − σ

(n−1)
21

]
,

σ̇
(n)
12 = iεσ (n)12 − 1

2
(D′ + D)σ (n)12 + √

DD′σ (n−1)
12 + i�0

[
σ
(n)
11 − σ

(n)
22

]
+ �

2Vd

[
σ
(n)
11 + σ

(n)
22

]

− �

2Vd

[
�′

�
σ
(n−1)
11 + �

�′ σ
(n−1)
22

]
+ �

2Vd

[
σ
(n−1)
11 + σ

(n−1)
22

]

− �

2Vd

[
�

�′ σ
(n)
11 + �′

�
σ
(n)
22

]
.

(10)

Summing over n, we obtain the following Bloch-type rate equations for the density-matrix
elements:

σ̇11 = i�0(σ12 − σ21),

σ̇22 = i�0(σ21 − σ12),

σ̇12 = iεσ12 − 
d

2
σ12 + i�0(σ11 − σ22)− χ

2
(σ11 + σ22),

(11)

with


d =
(√

D′ − √
D

)2
, χ =

(
�

Vd

) (
�

�′ + �′

�
− 2

)
. (12)

Here σi j = ∑
n σ

(n)
i j are the reduced density-matrix elements of the CQD system after tracing

out the variables of the QPC. The decoherence rate 
d characterizes the exponential damping of
the off-diagonal density-matrix element. These Bloch-type rate equations are the same as those
from a theory based on master equations with the Markovian approximation (cf equation (17)
in [8]). When ignoring the effects of the higher-order terms χ = 0. These equations are reduced
to the rate equations derived in [5b], which gives the unphysical result of identical occupation
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Figure 2. Occupation probability of the extra electron in each quantum dot as a function of time
for 
d = �0 and (a) ε = E2 − E1 = 0, χ = 0; (b) ε = 0, χ = 0.1�0; (c) ε = �0, χ = 0; and
(d) ε = �0, χ = 0.1�0.

(This figure is in colour only in the electronic version)

probabilities for asymmetrical CQDs. This implies that the higher-order terms play an essential
role in obtaining more accurate and reasonable results and help us better understand the effects
of the quantum measurement on the system considered.

Here we take into account the terms of the order�2�0/Vd, while these terms were ignored
in [5]. To obtain more accurate results, one can consider further higher-order terms, which have
the order of�6/V 2

d and�6�0/V 3
d . In the high-voltage regime, these higher-order terms do not

affect the results significantly (see the appendix).

3. Discussion and conclusion

Figure 2 shows the time dependence of the occupation probability of the extra electron in each
quantum dot. When χ = 0, the occupation probability in each dot always decays to 0.5 at
t → ∞ (see figures 2(a) and (c)). These results are identical to those in [5b]. However, after
including higher-order terms, χ becomes nonzero and is not negligible. This gives rise to an
additional term 1

2χ(σ11 +σ22) in the last equation in (11). From figure 2(b), one can see that the
occupation probabilities still decay to 0.5 as t → ∞ for symmetrical CQDs, but decay more
slowly than in the previous case with vanishing χ . Moreover, for asymmetrical CQDs, the
occupation probability in each dot decays to a different value at t → ∞ (see figure 2(d)). This
is reasonable because the two quantum dots are characterized by different parameters. Below
we further explain these phenomena analytically.
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Let us look at the stationary solution of equation (11) in the limit t → ∞ so that
σ̇i j (t → ∞) = 0. Using σi j(t → ∞) = ui j + ivi j , where ui j and vi j are real numbers,
equation (11) can be rewritten as

0 = −2�0v12

0 = 2�0v12

0 = iε(u12 + iv12)− 
d

2
(u12 + iv12)+ i�0(σ11 − σ22)− χ

2
.

(13)

From these equations, one obtains

σ11 − σ22 = χε

�0
d
= ε

Vd
. (14)

As expected, σ11 = σ22 for E1 = E2 (i.e., ε = 0), while σ11 �= σ22 for asymmetrical CQDs
with E1 �= E2 (i.e., ε �= 0).

In conclusion, we have presented a quantitative description of the dissipative dynamics
of a CQD qubit connected to a detector in the form of a QPC. Bloch-type rate equations
for the reduced density-matrix elements of the qubit are derived. In particular, the long-time
probability distribution of the state of the qubit is found to depend on the energy levels of the
single-dot electron states. This corrects an earlier calculation which has predicted a distribution
independent of the dot properties. The improvement results from taking into account higher-
order interaction terms in our analysis and it can be extended to other quantum systems. In
the present work, the Bloch-type rate equations are derived for a CQD system working at zero
temperature and applied in the strong bias voltage regime. However, a finite temperature will
affect the asymptotic population of the qubit and a population inversion can even be achieved
in some cases [9].
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Appendix. Derivation of equations for probability amplitudes

For the QPC, we assume that the hopping amplitude �lr (El, Er ) between the left and right
reservoirs depends only weakly on the energy levels El and Er . The energy dependence is
therefore neglected, i.e., �lr (El, Er ) = �, and �′

lr (El, Er ) = �′. As high-order terms∑
l′r ′ �′b1ll′rr ′(E) and

∑
l′r ′ �b2ll′rr ′(E) are neglected, equations (3c) and (3d) give

�′b1lr (E) ≈ (E + El − E2 − Er )�
′2b1(E)+�′�0�b2(E)

(E + El − E1 − Er )(E + El − E2 − Er )−�2
0

. (A.1)

Because the energy levels in each electron reservoir of the QPC are dense, we can
replace each sum over l and r in equations (3a) and (3b) by an integral. For instance,∑

lr →∫ ∫
ρl(El)ρr (Er ) dEl dEr , where ρl,r is the density of states in the left and right

reservoirs, respectively. This integral can be split into two parts: the principal and singular value
parts. Here the bandwidths of the QPC reservoirs are much larger than Vd and the principal part
is thus negligibly small [10]. Actually, the principal part merely renormalizes the energy levels
and the singular value part plays the dominant role. When equation (A.1) is substituted into
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∑
lr �

′b1lr (E), we thus obtain two terms. The first term is given by

∑

lr

(E + El − E2 − Er )�
′2b1(E)

(E + El − E1 − Er )(E + El − E2 − Er )−�2
0

= b1(E)
∫ μL

−∞
dEl

∫ +∞

μR

dEr
ρl(El)ρr (Er )�

′2(E + El − E2 − Er )

(E + El − Er − E ′
1)(E + El − Er − E ′

2)

≈ b1(E)
∫ μL

−∞
dEl

∫ +∞

μR

dEr

(
−iπρlρr�

′2
)

×
{

E + El − Er − E ′
2

(E + El − Er − E ′
2)

2 + η2
δ(E + El − Er − E ′

1)(E + El − E2 − Er )

+ E + El − Er − E ′
1

(E + El − Er − E ′
1)

2 + η2
δ(E + El − Er − E ′

2)(E + El − E2 − Er )

}

= −i
D′

2Vd
b1(E)

{
1

ε′

(
ε′

2
+ ε

2

)
(Vd + E − E ′

1)θ(Vd + E − E ′
1)

+ 1

ε′

(
ε′

2
− ε

2

)
(Vd + E − E ′

2)θ(Vd + E − E ′
2)

}
, (A.2)

where Vd = μL − μR, D′ = 2πρlρr�
′2Vd, ε = E2 − E1, ε′ =

√
ε2 + 4�2

0, E ′
1,2 =

1
2 (E1 + E2) ∓ 1

2ε
′, and θ(x) is the Heaviside step function. In the high-voltage limit with

eVd � �2ρ, the step function in equation (A.2) becomes one. Thus, the left-hand side of
equation (A.2) can be approximated by −i(D′/2Vd)(Vd + E − E1)b1(E). When higher-order
terms, i.e., the terms of the order O(�6/V 2

d ), are included, equation (A.2) is approximated by
−i(D′/2Vd){Vd[1 − 1

2 (D
′/Vd)

2] + E − E1}b1(E) in the high-voltage limit. Obviously, the
correction by (D′/Vd)

2 is very small for a large voltage Vd.
The second term is

∑

lr

�′��0b2(E)

(E + El − E1 − Er )(E + El − E2 − Er )−�2
0

= b2(E)
∫ μL

−∞
dEl

∫ +∞

μR

dEr
ρl(El)ρr (Er )�

′��0

(E + El − E ′
1 − Er )(E + El − E ′

2 − Er )

≈ b2(E)
∫ μL

−∞
dEl

∫ +∞

μR

dEr (−iπρlρr�
′��0)

×
{

1

E + El − E ′
1 − Er

δ(E + El − E ′
2 − Er )

+ 1

E + El − E ′
2 − Er

δ(E + El − E ′
1 − Er )

}

= −i�

2Vd
b2(E)

1

E ′
2 − E ′

1

[(Vd + E − E ′
2)θ(Vd + E − E ′

2)

− (Vd + E − E ′
1)θ(Vd + E − E ′

1)], (A.3)

where � = 2πρlρr�
′�0�Vd. In the high-voltage limit, the two step functions in

equation (A.3) become one and the left-hand side of equation (A.3) is finally approximated by
i(�/2Vd)b2(E). Thus, the sum of these two terms gives equation (4) in the high-voltage limit.
Substituting equation (4) into equation (3a), one obtains equation (5a). Also, one can derive
equations (5b)–(5d) using similar procedures. When higher-order terms, i.e., the terms of the
order O(�6�0/V 3

d ), are considered, equation (A.3) is approximated by i(�/2Vd)(1+γ )b2(E)
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in the high-voltage regime, where the correction γ = [(D + D′)
√

DD′ − DD′]/4V 2
d is very

small for a large voltage Vd.
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